Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor.
نویسندگان
چکیده
BACKGROUND The mechanism underlying the ability of virulent Salmonella organisms to escape clearance by macrophages is incompletely understood. Here, we report a novel mechanism by which Salmonella escapes macrophages. METHODS Microarray and quantitative real-time polymerase chain reaction analyses were used to screen key microRNAs regulating Salmonella-host cell interactions. Target gene was tested using luciferase reporter and Western blot assays. The role of microRNA 128 (miR-128) was assayed using intestinal epithelial cells and a mouse infection model. RESULTS The miR-128 level in human intestinal epithelial HT29 cells was strongly increased by infection with strain SE2472, and the elevation in miR-128 levels in mouse intestine and colon tissues correlated with the level of Salmonella infection in mice. Macrophage colony-stimulating factor (M-CSF) was identified as a target of miR-128, and increased miR-128 levels in epithelial cells due to infection with strain SE2472 significantly decreased the level of cell-secreted M-CSF, leading to impaired M-CSF-mediated macrophage recruitment. The secreted proteins from Salmonella were identified as possible effectors to induce miR-128 expression via the p53 signaling pathway. Moreover, intragastric delivery of anti-miR-128 antagomir into mice significantly increased M-CSF-mediated macrophage recruitment and suppressed Salmonella infection. CONCLUSIONS Salmonella can upregulate intestinal epithelial miR-128 expression, which, in turn, decreases levels of epithelial cell-secreted M-CSF and M-CSF-induced macrophage recruitment.
منابع مشابه
Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.
Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to ...
متن کاملSalmonella enterica serovar typhi modulates cell surface expression of its receptor, the cystic fibrosis transmembrane conductance regulator, on the intestinal epithelium.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is an epithelial receptor mediating the translocation of Salmonella enterica serovar Typhi to the gastric submucosa. Since the level of cell surface CFTR is directly related to the efficiency of serovar Typhi translocation, the goal of this study was to measure CFTR expression by the intestinal epithelium during infection. C...
متن کاملInfluence of Slc11a1 on the outcome of Salmonella enterica serovar Enteritidis infection in mice is associated with Th polarization.
Genetic analyses identified Ses1 as a significant quantitative trait locus influencing the carrier state of 129S6 mice following a sublethal challenge with Salmonella enterica serovar Enteritidis. Previous studies have determined that Slc11a1 was an excellent candidate gene for Ses1. Kinetics of infection in 129S6 mice and Slc11a1-deficient (129S6-Slc11a1(tm1Mcg)) mice demonstrated that the wil...
متن کاملA live Salmonella enterica serovar Enteritidis vaccine allows serological differentiation between vaccinated and infected animals.
Three precisely defined deletion mutants of Salmonella enterica serovar Enteritidis were constructed, a guanine auxotrophic DeltaguaB mutant, a nonflagellated DeltafliC mutant, and an auxotrophic and nonflagellated DeltaguaB DeltafliC double mutant. All three mutants were less invasive than the wild-type strain in primary chicken cecal epithelial cells and the human epithelial cell line T84 and...
متن کاملIdentification of genes affecting Salmonella enterica serovar enteritidis infection of chicken macrophages.
Screening of 7,680 Salmonella enterica serovar Enteritidis mutants for attenuation in a chicken macrophage infection model yielded a series of mutants including several with defects in previously unrecognized Salmonella virulence genes. One of the newly identified genes was the pbpA2 gene, belonging to the penicillin binding protein gene family.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of infectious diseases
دوره 209 12 شماره
صفحات -
تاریخ انتشار 2014